/* pp_sort.c * * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, * 2000, 2001, 2002, 2003, 2004, 2005, by Larry Wall and others * * You may distribute under the terms of either the GNU General Public * License or the Artistic License, as specified in the README file. * */ /* * ...they shuffled back towards the rear of the line. 'No, not at the * rear!' the slave-driver shouted. 'Three files up. And stay there... */ /* This file contains pp ("push/pop") functions that * execute the opcodes that make up a perl program. A typical pp function * expects to find its arguments on the stack, and usually pushes its * results onto the stack, hence the 'pp' terminology. Each OP structure * contains a pointer to the relevant pp_foo() function. * * This particular file just contains pp_sort(), which is complex * enough to merit its own file! See the other pp*.c files for the rest of * the pp_ functions. */ #if defined(UNDER_CE) /* looks like 'small' is reserved word for WINCE (or somesuch)*/ #define small xsmall #endif #ifndef SMALLSORT #define SMALLSORT (200) #endif /* * The mergesort implementation is by Peter M. Mcilroy . * * The original code was written in conjunction with BSD Computer Software * Research Group at University of California, Berkeley. * * See also: "Optimistic Merge Sort" (SODA '92) * * The integration to Perl is by John P. Linderman . * * The code can be distributed under the same terms as Perl itself. * */ /* Binary merge internal sort, with a few special mods ** for the special perl environment it now finds itself in. ** ** Things that were once options have been hotwired ** to values suitable for this use. In particular, we'll always ** initialize looking for natural runs, we'll always produce stable ** output, and we'll always do Peter McIlroy's binary merge. */ /* Pointer types for arithmetic and storage and convenience casts */ #define GPTP(P) ((SV **)(P)) #define GPPP(P) ((SV ***)(P)) /* byte offset from pointer P to (larger) pointer Q */ #define BYTEOFF(P, Q) (((char *)(Q)) - ((char *)(P))) #define PSIZE sizeof(SV *) /* If PSIZE is power of 2, make PSHIFT that power, if that helps */ #ifdef PSHIFT #define PNELEM(P, Q) (BYTEOFF(P,Q) >> (PSHIFT)) #define PNBYTE(N) ((N) << (PSHIFT)) #define PINDEX(P, N) (GPTP((char *)(P) + PNBYTE(N))) #else /* Leave optimization to compiler */ #define PNELEM(P, Q) (GPTP(Q) - GPTP(P)) #define PNBYTE(N) ((N) * (PSIZE)) #define PINDEX(P, N) (GPTP(P) + (N)) #endif /* Pointer into other corresponding to pointer into this */ #define POTHER(P, THIS, OTHER) GPTP(((char *)(OTHER)) + BYTEOFF(THIS,P)) #define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src= 2 * PTHRESH. We only try to form long runs when ** PTHRESH adjacent pairs compare in the same way, suggesting overall order. ** ** Unless otherwise specified, pair pointers address the first of two elements. ** ** b and b+1 are a pair that compare with sense ``sense''. ** b is the ``bottom'' of adjacent pairs that might form a longer run. ** ** p2 parallels b in the list2 array, where runs are defined by ** a pointer chain. ** ** t represents the ``top'' of the adjacent pairs that might extend ** the run beginning at b. Usually, t addresses a pair ** that compares with opposite sense from (b,b+1). ** However, it may also address a singleton element at the end of list1, ** or it may be equal to ``last'', the first element beyond list1. ** ** r addresses the Nth pair following b. If this would be beyond t, ** we back it off to t. Only when r is less than t do we consider the ** run long enough to consider checking. ** ** q addresses a pair such that the pairs at b through q already form a run. ** Often, q will equal b, indicating we only are sure of the pair itself. ** However, a search on the previous cycle may have revealed a longer run, ** so q may be greater than b. ** ** p is used to work back from a candidate r, trying to reach q, ** which would mean b through r would be a run. If we discover such a run, ** we start q at r and try to push it further towards t. ** If b through r is NOT a run, we detect the wrong order at (p-1,p). ** In any event, after the check (if any), we have two main cases. ** ** 1) Short run. b <= q < p <= r <= t. ** b through q is a run (perhaps trivial) ** q through p are uninteresting pairs ** p through r is a run ** ** 2) Long run. b < r <= q < t. ** b through q is a run (of length >= 2 * PTHRESH) ** ** Note that degenerate cases are not only possible, but likely. ** For example, if the pair following b compares with opposite sense, ** then b == q < p == r == t. */ static IV dynprep(pTHX_ SV **list1, SV **list2, size_t nmemb, SVCOMPARE_t cmp) { I32 sense; register SV **b, **p, **q, **t, **p2; register SV *c, **last, **r; SV **savep; IV runs = 0; b = list1; last = PINDEX(b, nmemb); sense = (cmp(aTHX_ *b, *(b+1)) > 0); for (p2 = list2; b < last; ) { /* We just started, or just reversed sense. ** Set t at end of pairs with the prevailing sense. */ for (p = b+2, t = p; ++p < last; t = ++p) { if ((cmp(aTHX_ *t, *p) > 0) != sense) break; } q = b; /* Having laid out the playing field, look for long runs */ do { p = r = b + (2 * PTHRESH); if (r >= t) p = r = t; /* too short to care about */ else { while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) && ((p -= 2) > q)); if (p <= q) { /* b through r is a (long) run. ** Extend it as far as possible. */ p = q = r; while (((p += 2) < t) && ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p; r = p = q + 2; /* no simple pairs, no after-run */ } } if (q > b) { /* run of greater than 2 at b */ savep = p; p = q += 2; /* pick up singleton, if possible */ if ((p == t) && ((t + 1) == last) && ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) savep = r = p = q = last; p2 = NEXT(p2) = p2 + (p - b); ++runs; if (sense) while (b < --p) { c = *b; *b++ = *p; *p = c; } p = savep; } while (q < p) { /* simple pairs */ p2 = NEXT(p2) = p2 + 2; ++runs; if (sense) { c = *q++; *(q-1) = *q; *q++ = c; } else q += 2; } if (((b = p) == t) && ((t+1) == last)) { NEXT(p2) = p2 + 1; ++runs; b++; } q = r; } while (b < t); sense = !sense; } return runs; } /* The original merge sort, in use since 5.7, was as fast as, or faster than, * qsort on many platforms, but slower than qsort, conspicuously so, * on others. The most likely explanation was platform-specific * differences in cache sizes and relative speeds. * * The quicksort divide-and-conquer algorithm guarantees that, as the * problem is subdivided into smaller and smaller parts, the parts * fit into smaller (and faster) caches. So it doesn't matter how * many levels of cache exist, quicksort will "find" them, and, * as long as smaller is faster, take advanatge of them. * * By contrast, consider how the original mergesort algorithm worked. * Suppose we have five runs (each typically of length 2 after dynprep). * * pass base aux * 0 1 2 3 4 5 * 1 12 34 5 * 2 1234 5 * 3 12345 * 4 12345 * * Adjacent pairs are merged in "grand sweeps" through the input. * This means, on pass 1, the records in runs 1 and 2 aren't revisited until * runs 3 and 4 are merged and the runs from run 5 have been copied. * The only cache that matters is one large enough to hold *all* the input. * On some platforms, this may be many times slower than smaller caches. * * The following pseudo-code uses the same basic merge algorithm, * but in a divide-and-conquer way. * * # merge $runs runs at offset $offset of list $list1 into $list2. * # all unmerged runs ($runs == 1) originate in list $base. * sub mgsort2 { * my ($offset, $runs, $base, $list1, $list2) = @_; * * if ($runs == 1) { * if ($list1 is $base) copy run to $list2 * return offset of end of list (or copy) * } else { * $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1) * mgsort2($off2, $runs/2, $base, $list2, $list1) * merge the adjacent runs at $offset of $list1 into $list2 * return the offset of the end of the merged runs * } * } * mgsort2(0, $runs, $base, $aux, $base); * * For our 5 runs, the tree of calls looks like * * 5 * 3 2 * 2 1 1 1 * 1 1 * * 1 2 3 4 5 * * and the corresponding activity looks like * * copy runs 1 and 2 from base to aux * merge runs 1 and 2 from aux to base * (run 3 is where it belongs, no copy needed) * merge runs 12 and 3 from base to aux * (runs 4 and 5 are where they belong, no copy needed) * merge runs 4 and 5 from base to aux * merge runs 123 and 45 from aux to base * * Note that we merge runs 1 and 2 immediately after copying them, * while they are still likely to be in fast cache. Similarly, * run 3 is merged with run 12 while it still may be lingering in cache. * This implementation should therefore enjoy much of the cache-friendly * behavior that quicksort does. In addition, it does less copying * than the original mergesort implementation (only runs 1 and 2 are copied) * and the "balancing" of merges is better (merged runs comprise more nearly * equal numbers of original runs). * * The actual cache-friendly implementation will use a pseudo-stack * to avoid recursion, and will unroll processing of runs of length 2, * but it is otherwise similar to the recursive implementation. */ typedef struct { IV offset; /* offset of 1st of 2 runs at this level */ IV runs; /* how many runs must be combined into 1 */ } off_runs; /* pseudo-stack element */ static void sortsv(pTHX_ SV **base, size_t nmemb, SVCOMPARE_t cmp) { IV i, run, runs, offset; I32 sense, level; int iwhich; register SV **f1, **f2, **t, **b, **p, **tp2, **l1, **l2, **q; SV **aux, **list1, **list2; SV **p1; SV * small[SMALLSORT]; SV **which[3]; off_runs stack[60], *stackp; SVCOMPARE_t savecmp = 0; if (nmemb <= 1) return; /* sorted trivially */ if (nmemb <= SMALLSORT) aux = small; /* use stack for aux array */ else { New(799,aux,nmemb,SV *); } /* allocate auxilliary array */ level = 0; stackp = stack; stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp); stackp->offset = offset = 0; which[0] = which[2] = base; which[1] = aux; for (;;) { /* On levels where both runs have be constructed (stackp->runs == 0), * merge them, and note the offset of their end, in case the offset * is needed at the next level up. Hop up a level, and, * as long as stackp->runs is 0, keep merging. */ if ((runs = stackp->runs) == 0) { iwhich = level & 1; list1 = which[iwhich]; /* area where runs are now */ list2 = which[++iwhich]; /* area for merged runs */ do { offset = stackp->offset; f1 = p1 = list1 + offset; /* start of first run */ p = tp2 = list2 + offset; /* where merged run will go */ t = NEXT(p); /* where first run ends */ f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */ t = NEXT(t); /* where second runs ends */ l2 = POTHER(t, list2, list1); /* ... on the other side */ offset = PNELEM(list2, t); while (f1 < l1 && f2 < l2) { /* If head 1 is larger than head 2, find ALL the elements ** in list 2 strictly less than head1, write them all, ** then head 1. Then compare the new heads, and repeat, ** until one or both lists are exhausted. ** ** In all comparisons (after establishing ** which head to merge) the item to merge ** (at pointer q) is the first operand of ** the comparison. When we want to know ** if ``q is strictly less than the other'', ** we can't just do ** cmp(q, other) < 0 ** because stability demands that we treat equality ** as high when q comes from l2, and as low when ** q was from l1. So we ask the question by doing ** cmp(q, other) <= sense ** and make sense == 0 when equality should look low, ** and -1 when equality should look high. */ if (cmp(aTHX_ *f1, *f2) <= 0) { q = f2; b = f1; t = l1; sense = -1; } else { q = f1; b = f2; t = l2; sense = 0; } /* ramp up ** ** Leave t at something strictly ** greater than q (or at the end of the list), ** and b at something strictly less than q. */ for (i = 1, run = 0 ;;) { if ((p = PINDEX(b, i)) >= t) { /* off the end */ if (((p = PINDEX(t, -1)) > b) && (cmp(aTHX_ *q, *p) <= sense)) t = p; else b = p; break; } else if (cmp(aTHX_ *q, *p) <= sense) { t = p; break; } else b = p; if (++run >= RTHRESH) i += i; } /* q is known to follow b and must be inserted before t. ** Increment b, so the range of possibilities is [b,t). ** Round binary split down, to favor early appearance. ** Adjust b and t until q belongs just before t. */ b++; while (b < t) { p = PINDEX(b, (PNELEM(b, t) - 1) / 2); if (cmp(aTHX_ *q, *p) <= sense) { t = p; } else b = p + 1; } /* Copy all the strictly low elements */ if (q == f1) { FROMTOUPTO(f2, tp2, t); *tp2++ = *f1++; } else { FROMTOUPTO(f1, tp2, t); *tp2++ = *f2++; } } /* Run out remaining list */ if (f1 == l1) { if (f2 < l2) FROMTOUPTO(f2, tp2, l2); } else FROMTOUPTO(f1, tp2, l1); p1 = NEXT(p1) = POTHER(tp2, list2, list1); if (--level == 0) goto done; --stackp; t = list1; list1 = list2; list2 = t; /* swap lists */ } while ((runs = stackp->runs) == 0); } stackp->runs = 0; /* current run will finish level */ /* While there are more than 2 runs remaining, * turn them into exactly 2 runs (at the "other" level), * each made up of approximately half the runs. * Stack the second half for later processing, * and set about producing the first half now. */ while (runs > 2) { ++level; ++stackp; stackp->offset = offset; runs -= stackp->runs = runs / 2; } /* We must construct a single run from 1 or 2 runs. * All the original runs are in which[0] == base. * The run we construct must end up in which[level&1]. */ iwhich = level & 1; if (runs == 1) { /* Constructing a single run from a single run. * If it's where it belongs already, there's nothing to do. * Otherwise, copy it to where it belongs. * A run of 1 is either a singleton at level 0, * or the second half of a split 3. In neither event * is it necessary to set offset. It will be set by the merge * that immediately follows. */ if (iwhich) { /* Belongs in aux, currently in base */ f1 = b = PINDEX(base, offset); /* where list starts */ f2 = PINDEX(aux, offset); /* where list goes */ t = NEXT(f2); /* where list will end */ offset = PNELEM(aux, t); /* offset thereof */ t = PINDEX(base, offset); /* where it currently ends */ FROMTOUPTO(f1, f2, t); /* copy */ NEXT(b) = t; /* set up parallel pointer */ } else if (level == 0) goto done; /* single run at level 0 */ } else { /* Constructing a single run from two runs. * The merge code at the top will do that. * We need only make sure the two runs are in the "other" array, * so they'll end up in the correct array after the merge. */ ++level; ++stackp; stackp->offset = offset; stackp->runs = 0; /* take care of both runs, trigger merge */ if (!iwhich) { /* Merged runs belong in aux, copy 1st */ f1 = b = PINDEX(base, offset); /* where first run starts */ f2 = PINDEX(aux, offset); /* where it will be copied */ t = NEXT(f2); /* where first run will end */ offset = PNELEM(aux, t); /* offset thereof */ p = PINDEX(base, offset); /* end of first run */ t = NEXT(t); /* where second run will end */ t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */ FROMTOUPTO(f1, f2, t); /* copy both runs */ NEXT(b) = p; /* paralled pointer for 1st */ NEXT(p) = t; /* ... and for second */ } } } done: if (aux != small) Safefree(aux); /* free iff allocated */ return; }