package Bio::Graphics::Glyph::wiggle_density; use strict; use base qw(Bio::Graphics::Glyph::wiggle_data Bio::Graphics::Glyph::box Bio::Graphics::Glyph::smoothing Bio::Graphics::Glyph::xyplot ); sub my_description { return <export_to_wif(). coverage-- a simple comma-delimited string containing the quantitative values, assumed to be one value per pixel. END } sub my_options { { basedir => [ 'string', undef, 'If a relative path is used for "wigfile", then this option provides', 'the base directory on which to resolve the path.' ], z_score_bounds => [ 'integer', 4, 'When using z_score autoscaling, this option controls how many standard deviations', 'above and below the mean to show.' ], autoscale => [ ['local','chromosome','global','z_score','clipped_global'], 'clipped_global', 'If set to "global" , then the minimum and maximum values of the XY plot', 'will be taken from the wiggle file as a whole. If set to "chromosome", then', 'scaling will be to minimum and maximum on the current chromosome.', '"clipped_global" is similar to "global", but clips the top and bottom values', 'to the multiples of standard deviations indicated by "z_score_bounds"', 'If set to "z_score", then the whole plot will be rescaled to z-scores in which', 'the "0" value corresponds to the mean across the genome, and the units correspond', 'to standard deviations above and below the mean. The number of SDs to show are', 'controlled by the "z_score_bound" option.', 'Otherwise, the plot will be', 'scaled to the minimum and maximum values of the region currently on display.', 'min_score and max_score override autoscaling if one or both are defined' ], graph_type => [ undef, undef, 'Unused option', ], }; } sub pad_top { my $self = shift; my $overlap = $self->bump eq 'overlap'; return $overlap ?$self->Bio::Graphics::Glyph::xyplot::pad_top(@_) :$self->SUPER::pad_top(@_); } sub draw { my $self = shift; my ($gd,$dx,$dy) = @_; my $retval = $self->SUPER::draw(@_); if ($retval) { $self->draw_label(@_) if $self->option('label'); $self->draw_description(@_) if $self->option('description'); $self->panel->endGroup($gd); return $retval; } else { return $self->Bio::Graphics::Glyph::box::draw(@_); } } sub draw_coverage { my $self = shift; my $feature = shift; my $array = shift; if (! $array || ref($array) ne 'ARRAY'){ unshift(@_,$array); my @arr = (eval{$feature->get_tag_values('coverage')}); $array = $arr[0]; } else { $array = [split ',',$array] unless ref $array; } return unless @$array; my ($gd,$left,$top) = @_; my ($start,$end) = $self->effective_bounds($feature); my $length = $end - $start + 1; my $bases_per_bin = ($end-$start)/@$array; my @parts; my $samples = $length < $self->panel->width ? $length : $self->panel->width; my $samples_per_base = $samples/$length; for (my $i=0;$i<$samples;$i++) { my $offset = $i/$samples_per_base; my $v = $array->[$offset/$bases_per_bin]; push @parts,$v; } my ($x1,$y1,$x2,$y2) = $self->bounds($left,$top); $self->draw_segment($gd, $start,$end, \@parts, $start,$end, 1,1, $x1,$y1,$x2,$y2); } sub draw_segment { my $self = shift; my ($gd, $start,$end, $seg_data, $seg_start,$seg_end, $step,$span, $x1,$y1,$x2,$y2) = @_; # clip, because wig files do no clipping $seg_start = $start if $seg_start < $start; $seg_end = $end if $seg_end > $end; # figure out where we're going to start my $scale = $self->scale; # pixels per base pair my $pixels_per_span = $scale * $span + 1; my $pixels_per_step = 1; my $length = $end-$start+1; # if the feature starts before the data starts, then we need to draw # a line indicating missing data (this only happens if something went # wrong upstream) if ($seg_start > $start) { my $terminus = $self->map_pt($seg_start); $start = $seg_start; $x1 = $terminus; } # if the data ends before the feature ends, then we need to draw # a line indicating missing data (this only happens if something went # wrong upstream) if ($seg_end < $end) { my $terminus = $self->map_pt($seg_end); $end = $seg_end; $x2 = $terminus; } return unless $start < $end; # get data values across the area my $samples = $length < $self->panel->width ? $length : $self->panel->width; my $data = ref $seg_data eq 'ARRAY' ? $seg_data : $seg_data->values($start,$end,$samples); # scale the glyph if the data end before the panel does my $data_width = $end - $start; my $data_width_ratio; if ($data_width < $self->panel->length) { $data_width_ratio = $data_width/$self->panel->length; } else { $data_width_ratio = 1; } return unless $data && ref $data && @$data > 0; my $min_value = $self->min_score; my $max_value = $self->max_score; my ($min,$max,$mean,$stdev) = $self->minmax($data); unless (defined $min_value && defined $max_value) { $min_value ||= $min; $max_value ||= $max; } my $rescale = $self->option('autoscale') eq 'z_score'; my ($scaled_min,$scaled_max); if ($rescale) { my $bound = $self->z_score_bound; $scaled_min = -$bound; $scaled_max = +$bound; } else { ($scaled_min,$scaled_max) = ($min_value,$max_value); } my $t = 0; for (@$data) {$t+=$_} # allocate colors # There are two ways to do this. One is a scale from min to max. The other is a # bipartite scale using one color range from zero to min, and another color range # from 0 to max. The latter behavior is triggered when the config file contains # entries for "pos_color" and "neg_color" and the data ranges from < 0 to > 0. my $poscolor = $self->pos_color || $self->fgcolor; my $negcolor = $self->neg_color || $self->bgcolor; my $data_midpoint = $self->midpoint; $data_midpoint = 0 if $rescale; my $bicolor = $poscolor != $negcolor && $scaled_min < $data_midpoint && $scaled_max > $data_midpoint; my ($rgb_pos,$rgb_neg,$rgb); if ($bicolor) { $rgb_pos = [$self->panel->rgb($poscolor)]; $rgb_neg = [$self->panel->rgb($negcolor)]; } else { $rgb = $scaled_max > $scaled_min ? ([$self->panel->rgb($poscolor)] || [$self->panel->rgb($self->bgcolor)]) : ([$self->panel->rgb($negcolor)] || [$self->panel->rgb($self->bgcolor)]); } my %color_cache; @$data = reverse @$data if $self->flip; if (@$data <= $self->panel->width) { # data fits in width, so just draw it $pixels_per_step = $scale * $step; $pixels_per_step = 1 if $pixels_per_step < 1; my $datapoints_per_base = @$data/$length; my $pixels_per_datapoint = $self->panel->width/@$data * $data_width_ratio; my %temps; map{$temps{$_}++} (@$data); my %colorss = (); for (my $i = 0; $i <= @$data ; $i++) { my $x = $x1 + $pixels_per_datapoint * $i; my $data_point = $data->[$i]; defined $data_point || next; $data_point = ($data_point-$mean)/$stdev if $rescale; $data_point = $scaled_min if $scaled_min > $data_point; $data_point = $scaled_max if $scaled_max < $data_point; my ($r,$g,$b) = $bicolor ? $data_point > $data_midpoint ? $self->calculate_color($data_point,$rgb_pos, $data_midpoint,$scaled_max) : $self->calculate_color($data_point,$rgb_neg, $data_midpoint,$scaled_min) : $self->calculate_color($data_point,$rgb, $scaled_min,$scaled_max); my $idx = $color_cache{$r,$g,$b} ||= $self->panel->translate_color($r,$g,$b); $colorss{$idx} = $data_point; $self->filled_box($gd,$x,$y1,$x+$pixels_per_datapoint,$y2,$idx,$idx); } (keys %colorss); # Alleviate a silent crash somewhere in GD that causes density graph get drawn as a solid-colored box } else { # use Sheldon's code to subsample data $pixels_per_step = $scale * $step; my $pixels = 0; # only draw boxes 2 pixels wide, so take the mean value # for n data points that span a 2 pixel interval my $binsize = 2/$pixels_per_step; my $pixelstep = $pixels_per_step; $pixels_per_step *= $binsize; $pixels_per_step *= $data_width_ratio; $pixels_per_span = 2; my $scores = 0; my $defined; for (my $i = $start; $i < $end ; $i += $step) { # draw the box if we have accumulated >= 2 pixel's worth of data. if ($pixels >= 2) { my $data_point = $defined ? $scores/$defined : 0; $scores = 0; $defined = 0; $data_point = $scaled_min if $scaled_min > $data_point; $data_point = $scaled_max if $scaled_max < $data_point; my ($r,$g,$b) = $bicolor ? $data_point > $data_midpoint ? $self->calculate_color($data_point,$rgb_pos, $data_midpoint,$scaled_max) : $self->calculate_color($data_point,$rgb_neg, $data_midpoint,$scaled_min) : $self->calculate_color($data_point,$rgb, $scaled_min,$max_value); my $idx = $color_cache{$r,$g,$b} ||= $self->panel->translate_color($r,$g,$b); $self->filled_box($gd,$x1,$y1,$x1+$pixels_per_span,$y2,$idx,$idx); $x1 += $pixels; $pixels = 0; } my $val = shift @$data; # don't include undef scores in the mean calculation # $scores is the numerator; $defined is the denominator $scores += $val if defined $val; $defined++ if defined $val; # keep incrementing until we exceed 2 pixels # the step is a fraction of a pixel, not an integer $pixels += $pixelstep; } } } sub draw_plot { my $self = shift; my $parts = shift; my ($gd,$dx,$dy) = @_; my $x_scale = $self->scale; my $panel_start = $self->panel->start; my $feature = $self->feature; my $f_start = $feature->start > $panel_start ? $feature->start : $panel_start; my ($left,$top,$right,$bottom) = $self->calculate_boundaries($dx,$dy); # There is a minmax inherited from xyplot as well as wiggle_data, and I don't want to # rely on Perl's multiple inheritance DFS to find the right one. my ($min_score,$max_score,$mean,$stdev) = $self->minmax($parts); my $rescale = $self->option('autoscale') eq 'z_score'; my ($scaled_min,$scaled_max); if ($rescale) { $scaled_min = int(($min_score-$mean)/$stdev + 0.5); $scaled_max = int(($max_score-$mean)/$stdev + 0.5); my $bound = $self->z_score_bound; $scaled_max = $bound if $scaled_max > $bound; $scaled_min = -$bound if $scaled_min < -$bound; } else { ($scaled_min,$scaled_max) = ($min_score,$max_score); } my $pivot = $self->bicolor_pivot; my $positive = $self->pos_color; my $negative = $self->neg_color; my $midpoint = $self->midpoint; my ($rgb_pos,$rgb_neg,$rgb); if ($pivot) { $rgb_pos = [$self->panel->rgb($positive)]; $rgb_neg = [$self->panel->rgb($negative)]; } else { $rgb = $scaled_max > $scaled_min ? ([$self->panel->rgb($positive)] || [$self->panel->rgb($self->bgcolor)]) : ([$self->panel->rgb($negative)] || [$self->panel->rgb($self->bgcolor)]); } my %color_cache; my $flip = $self->{flip}; $self->panel->startGroup($gd); foreach (@$parts) { my ($start,$end,$score) = @$_; $score = ($score-$mean)/$stdev if $rescale; $score = $scaled_min if $scaled_min > $score; $score = $scaled_max if $scaled_max < $score; my $x1 = $left + ($start - $f_start) * $x_scale; my $x2 = $left + ($end - $f_start) * $x_scale; if ($flip) { $x1 = $right - ($x1-$left); $x2 = $right - ($x2-$left); ($x1,$x2) = ($x2,$x1); } my ($r,$g,$b) = $pivot ? ($score > $midpoint ? $self->calculate_color($score,$rgb_pos, $midpoint,$scaled_max) : $self->calculate_color($score,$rgb_neg, $midpoint,$scaled_min) ) : $self->calculate_color($score,$rgb, $scaled_min,$scaled_max); my $idx = $color_cache{$r,$g,$b} ||= $self->panel->translate_color($r,$g,$b); $self->filled_box($gd,$x1,$top,$x2,$bottom,$idx,$idx); } return 1; } sub _draw_coverage { my $self = shift; my $feature = shift; my $array = shift; $array = [split ',',$array] unless ref $array; return unless @$array; my ($start,$end) = $self->effective_bounds($feature); my $bases_per_bin = ($end-$start)/@$array; my $pixels_per_base = $self->scale; my @parts; for (my $pixel=0;$pixel<$self->width;$pixel++) { my $offset = $pixel/$pixels_per_base; my $s = $start + $offset; my $e = $s+1; # fill in gaps my $v = $array->[$offset/$bases_per_bin]; push @parts,[$s,$s,$v]; } $self->Bio::Graphics::Glyph::wiggle_density::draw_plot(\@parts,@_); } sub calculate_color { my $self = shift; my ($s,$rgb,$min_score,$max_score) = @_; $s ||= $min_score; return (255,255,255) if $max_score <= $min_score; # avoid div by zero my $relative_score = ($s-$min_score)/($max_score-$min_score); $relative_score = 0 if $relative_score < 0; $relative_score = 1 if $relative_score > 1; return map { int(255 - (255-$_) * $relative_score) } @$rgb; } sub min { $_[0] < $_[1] ? $_[0] : $_[1] } sub max { $_[0] > $_[1] ? $_[0] : $_[1] } sub record_label_positions { my $self = shift; my $rlp = $self->option('record_label_positions'); return $rlp if defined $rlp; return 1; } sub draw_label { shift->Bio::Graphics::Glyph::xyplot::draw_label(@_); } 1; __END__ =head1 NAME Bio::Graphics::Glyph::wiggle_density - A density plot compatible with dense "wig"data =head1 SYNOPSIS See and . =head1 DESCRIPTION This glyph works like the regular density but takes value data in Bio::Graphics::Wiggle file format: reference = chr1 ChipCHIP Feature1 1..10000 wigfile=./test.wig;wigstart=0 ChipCHIP Feature2 10001..20000 wigfile=./test.wig;wigstart=656 ChipCHIP Feature3 25001..35000 wigfile=./test.wig;wigstart=1312 The "wigfile" attribute gives a relative or absolute pathname to a Bio::Graphics::Wiggle format file. The optional "wigstart" option gives the offset to the start of the data. If not specified, a linear search will be used to find the data. The data consist of a packed binary representation of the values in the feature, using a constant step such as present in tiling array data. =head2 OPTIONS The same as the regular graded_segments glyph, except that the following options are recognized: Name Value Description ---- ----- ----------- basedir path Path to be used to resolve "wigfile" and "densefile" tags giving relative paths. Default is to use the current working directory. Absolute wigfile & densefile paths will not be changed. autoscale "local" or "global" If one or more of min_score and max_score options are absent, then these values will be calculated automatically. The "autoscale" option controls how the calculation is done. The "local" value will scale values according to the minimum and maximum values present in the window being graphed. "global" will use chromosome-wide statistics for the entire wiggle or dense file to find min and max values. smoothing method name Smoothing method: one of "mean", "max", "min" or "none" smoothing_window integer Number of values across which data should be smoothed. bicolor_pivot name Where to pivot the two colors when drawing bicolor plots. Options are "mean" and "zero". A numeric value can also be provided. pos_color color When drawing bicolor plots, the fill color to use for values that are above the pivot point. neg_color color When drawing bicolor plots, the fill color to use for values that are below the pivot point. =head2 SPECIAL FEATURE TAGS The glyph expects one or more of the following tags (attributes) in feature it renders: Name Value Description ---- ----- ----------- wigfile path name Path to the Bio::Graphics::Wiggle file for vales. (required) densefile path name Path to a Bio::Graphics::DenseFeature object (deprecated) denseoffset integer Integer offset to where the data begins in the Bio::Graphics::DenseFeature file (deprecated) densesize integer Integer size of the data in the Bio::Graphics::DenseFeature file (deprecated) =head1 BUGS Please report them. =head1 SEE ALSO L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L =head1 AUTHOR Lincoln Stein Esteinl@cshl.eduE. Copyright (c) 2007 Cold Spring Harbor Laboratory This package and its accompanying libraries is free software; you can redistribute it and/or modify it under the terms of the GPL (either version 1, or at your option, any later version) or the Artistic License 2.0. Refer to LICENSE for the full license text. In addition, please see DISCLAIMER.txt for disclaimers of warranty. =cut