# Copyright 2010, 2011, 2012, 2013, 2014, 2016, 2018, 2019, 2020 Kevin Ryde # This file is part of Math-NumSeq. # # Math-NumSeq is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 3, or (at your option) any later # version. # # Math-NumSeq is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY # or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License # for more details. # # You should have received a copy of the GNU General Public License along # with Math-NumSeq. If not, see . package Math::NumSeq::AlmostPrimes; use 5.004; use strict; use vars '$VERSION', '@ISA'; $VERSION = 75; use Math::NumSeq; @ISA = ('Math::NumSeq'); use Math::NumSeq::Primes; use Math::NumSeq::Primorials; # uncomment this to run the ### lines #use Smart::Comments; # use constant name => Math::NumSeq::__('Almost Primes'); use constant description => Math::NumSeq::__('Products of a fixed number of primes, default the semi-primes, 4, 6, 9, 10, 14 15, etc with just two prime factors P*Q.'); use constant i_start => 1; use constant characteristic_increasing => 1; use constant characteristic_integer => 1; use constant parameter_info_array => [ { name => 'factor_count', display => Math::NumSeq::__('Factor Count'), type => 'integer', default => 2, minimum => 2, width => 2, description => Math::NumSeq::__('How many prime factors to include.'), }, { name => 'multiplicity', display => Math::NumSeq::__('Multiplicity'), type => 'enum', choices => ['repeated','distinct'], choices_display => [Math::NumSeq::__('Repeated'), Math::NumSeq::__('Distinct'), ], default => 'repeated', # description => Math::NumSeq::__(''), }, ]; # cf A068318 - sum of the prime factors of the nth semiprime # my %oeis_anum = (repeated => [ undef, 'A000040', # 1, just the primes 'A001358', # 2 with repeats 'A014612', # 3 with repeats 'A014613', # 4 with repeats 'A014614', # 5 with repeats 'A046306', # 6 with repeats 'A046308', # 7 with repeats 'A046310', # 8 with repeats 'A046312', # 9 with repeats 'A046314', # 10 with repeats 'A069272', # 11 with repeats 'A069273', # 12 with repeats 'A069274', # 13 with repeats 'A069275', # 14 with repeats 'A069276', # 15 with repeats 'A069277', # 16 with repeats 'A069278', # 17 with repeats 'A069279', # 18 with repeats 'A069280', # 19 with repeats 'A069281', # 20 with repeats # OEIS-Other: A000040 factor_count=1 # OEIS-Catalogue: A001358 # OEIS-Catalogue: A014612 factor_count=3 # OEIS-Catalogue: A014613 factor_count=4 # OEIS-Catalogue: A014614 factor_count=5 # OEIS-Catalogue: A046306 factor_count=6 # OEIS-Catalogue: A046308 factor_count=7 # OEIS-Catalogue: A046310 factor_count=8 # OEIS-Catalogue: A046312 factor_count=9 # OEIS-Catalogue: A046314 factor_count=10 # OEIS-Catalogue: A069272 factor_count=11 # OEIS-Catalogue: A069273 factor_count=12 # OEIS-Catalogue: A069274 factor_count=13 # OEIS-Catalogue: A069275 factor_count=14 # OEIS-Catalogue: A069276 factor_count=15 # OEIS-Catalogue: A069277 factor_count=16 # OEIS-Catalogue: A069278 factor_count=17 # OEIS-Catalogue: A069279 factor_count=18 # OEIS-Catalogue: A069280 factor_count=19 # OEIS-Catalogue: A069281 factor_count=20 ], distinct => [ undef, 'A000040', # 1, just the primes 'A006881', # 2 distinct primes 'A007304', # 3 distinct primes 'A046386', # 4 distinct primes 'A046387', # 5 distinct primes 'A067885', # 6 distinct primes 'A123321', # 7 distinct primes 'A123322', # 8 distinct primes 'A115343', # 9 distinct primes # OEIS-Other: A000040 multiplicity=distinct factor_count=1 # OEIS-Catalogue: A006881 multiplicity=distinct # OEIS-Catalogue: A007304 multiplicity=distinct factor_count=3 # OEIS-Catalogue: A046386 multiplicity=distinct factor_count=4 # OEIS-Catalogue: A046387 multiplicity=distinct factor_count=5 # OEIS-Catalogue: A067885 multiplicity=distinct factor_count=6 # OEIS-Catalogue: A123321 multiplicity=distinct factor_count=7 # OEIS-Catalogue: A123322 multiplicity=distinct factor_count=8 # OEIS-Catalogue: A115343 multiplicity=distinct factor_count=9 ], ); sub oeis_anum { my ($self) = @_; return $oeis_anum{$self->{'multiplicity'}}->[$self->{'factor_count'}]; } sub values_min { my ($self) = @_; my $factor_count = $self->{'factor_count'}; if ($self->{'multiplicity'} eq 'distinct') { return Math::NumSeq::Primorials->ith($factor_count); } else { return 2 ** $factor_count; } } sub rewind { my ($self) = @_; $self->{'i'} = $self->i_start; $self->{'done'} = 1; $self->{'hi'} = 0; $self->{'pending'} = []; } sub next { my ($self) = @_; my $done = $self->{'done'}; my $pending = $self->{'pending'}; for (;;) { ### $done if (@$pending) { ### ret: $self->{'i'}, $pending->[0] return ($self->{'i'}++, ($self->{'done'} = shift @$pending)); } ### refill pending array ... my $factor_count = $self->{'factor_count'}; my $distinct = ($self->{'multiplicity'} eq 'distinct'); ### $factor_count ### $distinct my $hi = $self->{'hi'} = ($self->{'hi'} == 0 ? 500 + $self->values_min : $self->{'hi'} * 2); my $primes_hi = int ($hi / ($distinct ? Math::NumSeq::Primorials->ith($factor_count-1) : 2 ** ($factor_count-1))); ### $hi ### $primes_hi require Math::NumSeq::Primes; my @primes = Math::NumSeq::Primes::_primes_list (0, $primes_hi); if (@primes < ($distinct ? $factor_count : 1)) { ### not enough primes, go bigger ... next; } ### primes count: scalar(@primes) # This is an iterative array based descent so as not to hit the "deep # recursion" warnings if factor_count is 100 or more. Though quite how # well such a large count works in practice is another matter. Ought to # break out bignums for 2^100 etc to keep accuracy. # # The @any flags track whether any products were added by the descent. # It allows big chunks of the descent to be pruned back at a low depth # when the products get close to $hi. my @prod = (1); my @upto = (-1); my @any; my $depth = 0; OUTER: for (;;) { my $prod = $prod[$depth]; if ($depth >= $factor_count-1) { ### lowest level: "prod=$prod and ".($upto[$depth]+1)." to $#primes" my $prev_len = @$pending; foreach my $i ($upto[$depth]+1 .. $#primes) { my $new_prod = $prod * $primes[$i]; ### $new_prod if ($new_prod > $hi) { last; } if ($new_prod > $done) { push @$pending, $new_prod; } } ### pushed: "was $prev_len count ".(@$pending-$prev_len)." ".((@$pending>$prev_len) && $pending->[$prev_len])." to ".((@$pending>$prev_len) && $pending->[-1]) ### pending: @$pending if ($depth > 0) { $any[$depth] ||= (@$pending != $prev_len); } } else { ### increment at: "depth=$depth" my $upto = ++$upto[$depth]; if ($upto <= $#primes) { $prod *= $primes[$upto]; if ($prod < $hi) { ### descend to: "upto=".($upto+$distinct)." prod=$prod" $depth++; $prod[$depth] = $prod; $upto[$depth] = $upto + $distinct - 1; $any[$depth] = 0; next; } } } ### backtrack ... for (;;) { if (--$depth < 0) { last OUTER; } $any[$depth] ||= $any[$depth+1]; if ($any[$depth]) { ### continue at this depth ... last; } else { ### not any, backtrack further ... } } } # my $descend; # $descend = sub { # my ($prod, $start, $depth) = @_; # ### descend: "$prod $start $depth" # my $any = 0; # if ($depth > 0) { # foreach my $i ($start .. $#primes) { # my $new_prod = $prod * $primes[$i]; # if ($new_prod > $hi) { # last; # } # if (! &$descend ($new_prod, # $distinct ? $i+1 : $i, # $depth-1)) { # ### nothing added, break out ... # last; # } # $any = 1; # } # } else { # foreach my $i ($start .. $#primes) { # my $new_prod = $prod * $primes[$i]; # if ($new_prod > $hi) { # last; # } # $any = 1; # if ($new_prod > $done) { # push @$pending, $new_prod; # } # } # } # ### $any # return $any; # }; # &$descend (1, 0, $factor_count-1); @$pending = sort {$a<=>$b} @$pending; } } sub pred { my ($self, $value) = @_; ### AlmostPrimes pred(): $value unless ($value >= 0 && $value <= 0xFFFF_FFFF) { return undef; } if ($value < 1 || $value != int($value)) { return 0; } $value = "$value"; # numize Math::BigInt for speed my $factor_count = $self->{'factor_count'}; my $distinct = ($self->{'multiplicity'} eq 'distinct'); my $seen_count = 0; unless ($value % 2) { ### even ... $value /= 2; $seen_count = 1; until ($value % 2) { $value /= 2; if ($seen_count++ > $factor_count || $distinct) { return 0; } ### $seen_count } } my $limit = int(sqrt($value)); for (my $p = 3; $p <= $limit; $p += 2) { unless ($value % $p) { $value /= $p; if ($seen_count++ > $factor_count) { return 0; } until ($value % $p) { $value /= $p; if ($seen_count++ > $factor_count || $distinct) { return 0; } } $limit = int(sqrt($value)); # new smaller limit } } if ($value != 1) { $seen_count++; } ### final seen_count: $seen_count return ($seen_count == $factor_count); } 1; __END__ =for stopwords Ryde Math-NumSeq primorial eg ie semiprimes =head1 NAME Math::NumSeq::AlmostPrimes -- semiprimes and other fixed number of prime factors =head1 SYNOPSIS use Math::NumSeq::AlmostPrimes; my $seq = Math::NumSeq::AlmostPrimes->new (factor_count => 2); my ($i, $value) = $seq->next; =head1 DESCRIPTION This sequence is various "almost prime" numbers. These are numbers with a given number of prime factors. The default is 2 prime factors, which are the semi-primes. For example 15 because 15=3*5. 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, ... # starting i=1 =head2 Factor Count C $c> controls how many prime factors are to be used. 1 would be the primes themselves (the same as L). Or for example factor count 4 is as follows. 60 is present because 60=2*2*3*5 has precisely 4 prime factors. # factor_count => 4 16, 24, 36, 40, 54, 60, ... The first number in the sequence is 2^factor_count, being prime factor 2 repeated factor_count many times. =head2 Multiplicity C 'distinct'> asks for products of distinct primes. For the default factor count 2 this means exclude squares like 4=2*2, which leaves # multiplicity => 'distinct' 6, 10, 14, 15, 21, ... For other factor counts, multiplicity "distinct" eliminates any numbers with repeated factors, leaving only square-free numbers. For example factor count 4 becomes # factor_count => 4, multiplicity => 'distinct' 210, 330, 390, 462, 510, 546, ... For multiplicity "distinct" the first value in the sequence is a primorial (see L), being the first C many primes multiplied together. For example 210 above is primorial 2*3*5*7. =head1 FUNCTIONS See L for behaviour common to all sequence classes. =over 4 =item C<$seq = Math::NumSeq::AlmostPrimes-Enew ()> =item C<$seq = Math::NumSeq::AlmostPrimes-Enew (factor_count =E $integer, multiplicity =E $str)> Create and return a new sequence object. C can be "repeated" repeated primes allowed (the default) "distinct" all primes must be distinct =item C<$bool = $seq-Epred($value)> Return true if C<$value> is an almost-prime, ie. it has exactly C many prime factors, and if C is true then all those factors different. This check requires factorizing C<$value> and in the current code a hard limit of 2**32 is placed on values to be checked, in the interests of not going into a near-infinite loop. =back =head1 SEE ALSO L, L, L L =head1 HOME PAGE L =head1 LICENSE Copyright 2010, 2011, 2012, 2013, 2014, 2016, 2018, 2019, 2020 Kevin Ryde Math-NumSeq is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. Math-NumSeq is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Math-NumSeq. If not, see . =cut